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When the vertical boundaries of a container of stratified brine solution are heated, 
cells are observed to form in the brine with a layered structure. An explanation 
of this phenomenon has been given in terms of the successive growth of cells from 
the top and bottom of the container. An alternative explanation is given here 
which is based on an examination of the stability of the fluid layer in the neigh- 
bourhood of the vertical boundaries, a layer in which there exist horizontal 
gradients in both temperature and salinity, and the explanation is subjected to 
comparison with a carefully controlled laboratory experiment. The theoretical 
description is fairly general and it seems possible that the effects of horizontal 
gradients of salinity and temperature, which approximately compensate each 
other so as to leave no horizontal density gradient, may be important in the ocean, 
as suggested by Stern (1967). 

1. Introduction 
In  the early experiments by Turner & Stommel (1964) in which a stably 

stratified brine solution was heated from below, layers were observed both near 
the bottom of the container and further up. The layers near the bottom grew 
successively one on top of the other, and an explanation of these layers has been 
given both in the original paper and also later in greater detail by Turner (1968). 
The layers further up the container were explained as being due to heat entering 
through the side walls, being similar in nature to those found in the subsidence of 
suspension of h e  particles in a tube which were observed and explained by 
Mendenhall & Mason (1923). Similar layers were observed in the experiment in 
a stratified brine solution by Thorpe (1966) and figure 1, plate 1, shows how they 
develop. To the left of the photographs is a brine solution with a uniform stable 
salinity gradient. A small crystal of potassium permanganate is fixed near to the 
vertical wall of the container and dye from the crystal colours the layers which 
appear some time after the wall is f i s t  heated. (The dye plays no part in the pheno- 
menon; the layers develop in exactly the same way if no dye is used and a shadow- 
graph technique is used for observation.) The layers f i s t  appear as a series of 
two-dimensional rolls near the wall, in each of which there is a counter-clockwise 
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rotation (so tha t  fluid rises near the hot wall). The width of these rolls increases 
quite rapidly to  form layers with a slight downward inclination. Some of them 
amalgamate, usually by fluid from a lower layer penetrating through its upper 
boundary near the hot wall into the cell above and then taking part in the motion 
in the upper layer. The layers are observed t o  increase their horizontal scale until 
they reach the further wall of the container, still maintaining clear boundaries 
between each of them. Provided the lateral walls are well insulated the motions 
appear t o  be quite two-dimensional. A description of the developed layers in 
a typical experiment is given in $4, and figure 11, plate 2, shows the appearance 
of the layers some time after they had spread right across the rectangular 
container. 

The explanation offered by Thorpe (1966) for the formation of the layers was 
essentially tha t  of Mendenhall & Mason applied t o  a heated side-wall rather than 
a cooled one. Mendenhall & Mason's explanation is, for convenience, reprinted 
below: 

Suppose now that the temperature of one side of the tube be lowered so that 
a lateral difference of temperature is established across the tube at  all levels. If 
no vertical density variation were present, the liquid would be set into convection, 
the entire volume of the liquid furnishing a single continuous convective pattern, 
with lines of flow near the wall which would extend continuously from top to bottom 
on the cold side and from bottom to top on the hot side. If a sufficient density gradient 
due to suspended particles be initially present in the liquid, however, a different 
type of convection will be formed. A portion of the liquid near the cold wall becomes 
denser than the average a t  its depth and flows downwards. As it falls, its negative 
buoyancy due to  temperature difference becomes continuously less since the density 
of the liquid into which the portion is flowing is greater on account of its larger con- 
tent of suspended particles. Reaching a level where its temperature contraction 
balances the excess density of the main mass of fluid a t  that depth it is in stable 
equilibrium, and the downward flow ceases. Fluid elements near the cold wall thus 
tend to flow a definite distance downwards. 

As the uppermost element A moves down, fluid from the top of the column follows 
in its wake, so that while the elements below A show variation in density due to 
particle content, the new elements which are continuously brought to the top of the 
cold wall are drawn from the top portion of the liquid and are of nearly uniform 
density. 

When A reaches its equilibrium depth, its downward flow is decelerated and i t  
turns into the interior of the liquid, this motion being followed by the elements 
behind A .  The equilibrium depth for A thus acts approximately as a boundary limiting 
the flow, and a local convection is established in the upper portion of liquid, this 
portion being mixed so that its particle content becomes uniform, equal to the 
average content of the portion before mixing. Thus a definite upper layer is formed, 
with an internal convection system, the density being uniform and less than that of 
the liquid below. 

The bottom of this layer acts for the fluid below it, as did the top surface of the 
liquid in the formation of the top layer. A second layer establishes itself, similar in 
character to the top layer, and in this manner the entire volume of liquid is divided 
into layers. 

The layer depth is characterized by the fact that the thermal contraction of the 
fluid elements originally a t  its top is sufficient to increase the density to that originally 
obtaining a t  its bottom, due to the increased content of suspended particles. 
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This explanation rests on the assumption that the layers grow in succession, 
one on top of the other, from the horizontal boundaries of the fluid, and it does 
not supply any lower bound on the temperature contrasts required to produce 
layers. Experiments with stratified brine solution show that indeed the first 
appearance of layers is near the horizontal boundaries, sometimes at  both top 
and bottom of the container, but that the layers a t  intermediate levels can grow 
simultaneously, and not in succession from the horizontal boundaries. This 
observation has been carefully confirmed by means of time-lapse photography. 
Moreover, it is observed that small increases in wall temperature do not lead to 
the simultaneous formation of layers, at  least in the time during which the 
experiments were made (up to 90 min), whereas larger increases produce layers 
quiterapidly. In the experiments which will be described in 4 3, the stratified brine 
solution is contained between two vertical walls separated by a small distance, 
and the temperature difference between the two walls just sufficient to produce 
the layers, is not found to be subject to the rate at which the fluid is heated. 

It is suggested that the first appearance of layers near the horizontal boundaries 
of the fluid may be due either to the effects described by Mendenhall & Mason, 
or to the fact that the vertical gradientsof salinity in these regions are smaller than 
at other layers (there being no salt flux through the boundaries, the salt gradients 
must fall to zero), so that the fluid is less stable in these regions in the sense 
described below. Further it is suggested that the layers growing simultaneously 
at  intermediate depths are the result of a difference in the diffusivities of heat and 
salinity and the presence of horizontal gradients of temperature and salinity 
near the vertical wall. Near a heated wall the fluid, becoming warmer by conduc- 
tion, will tend to rise under buoyancy forces, but will not change its salinity very 
much, owing to the very small value of the coefficient of diffusivity of salinity, 
and thus horizontal salinity gradients, as well as temperature gradients, will be 
established. If the heating is carried out sufficiently slowly the horizontal density 
gradient will at all times be very small (and it will be neglected in the theoretical 
discussion). It will be shown below that the presence of sufficiently large hori- 
zontal gradients will lead to instability with a layered structure. Cells will grow 
simultaneously only when the heating is such that these sufficiently large 
gradients are achieved. 

The simplest physical illustration of the instability is to consider two fluid 
particles lying at the same horizontal level in a fluid containing no vertical 
gradients, but horizontal gradients of temperature and salinity which just com- 
pensate so that there is no horizontal density gradient. If the particles of fluid 
are interchanged, the particle introduced into warmer and saltier surroundings 
becomes warmer but not much saltier, since the coefficient of diffusion of heat is 
about one hundred times greater than that of salinity, and it therefore rises, being 
less dense than its salty surroundings, whilst the other particle sinks. Thus we 
have generated vorticity in the fluid, and this is the source of the instability. This 
physical argument ignores viscosity and vertical gradients which play their 
part in providing a criterion for the onset of instability. 

In  order to establish a length scale, both theory and the experiments have been 
made in a fluid bounded by parallel planes, the length scale being the separation 
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between these planes, and only constant gradients of salinity and temperature 
are considered. In the case of a broad container heated through a vertical 
boundary, the length scale is provided by the thickness of the heated layer near 
the wall, and the length scale of the layers when they first appear, and the 
characteristics of the motion, will usually depend on the heated-layer thickness 
and also upon the rate at  which the fluid is heated, just as is the case in the 
BBnard problem (Currie 1967). 

A linear theory designed to predict the onset of instability, but not the details 
of the finite-amplitude flows which follow, is described in $ 2 .  Only situations in 
which the marginal state is characterized by the onset of steady convective 
motions are examined. This theory extends existingresults by Stern (1960), Walin 
(1964), Veronis (1965) and Nield (1967) on thermohaline convection with vertical 
gradients. The boundary conditions satisfied by the particular solution chosen 
for examination are not ones which would be satisfied in practice, but the addi- 
tional calculations required to treat realistic boundary conditions are formidable, 
and are not attempted here. Emphasis is placed on the theory which relates to 
the experiments discussed in $3 ,  and the theoretical and experimental results 
compare well, somewhat better than was t o  be expected in view of the boundary 
conditions used. 

The results and conclusions are summarized in $ 5  and their application to the 
occurrence of the layers which have been observed in the deep ocean is discussed. 

2. Theory 
We consider a fluid lying at  rest between parallel planes inclined at  an angle y 

to the horizontal, and separated by a distance d (see figure 2). The x axis and 
y axis are horizontal, the y axis (not shown in the figure) lying in the lower bound- 
ing plane, and the x axis is vertically upwards. The equation of state in the fluid 

where p is the density, po is a constant density, 8 is the temperature and S the 
salinity, a! is the coefficient of expansion and p is the coefficient representing 
the proportional density change for unit change in salinity a t  constant tempera- 
ture. Both a! and p are supposed to be constant and positive. In the undisturbed 
state the fluid contains uniform horizontal and vertical temperature gradients, 
VB, = (8,,, 0, B,,), and salinity gradients, 08, = (Sox, 0, So,), such that the hori- 
zontal density gradient is zero, so that 

aeoz = P S o x ,  (2) 

and the vertical density gradient negative (or zero), so that 

PS, - ad, G 0, (3) 

and the fluid is stably stratified (or neutral). The boundary conditions in this 
basic state are such that walls match the temperature and salinity conditions in 
the fluid. We consider a small perturbation of this state. 
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The equations which govern the motion are 

continuity: v .u  = 0; 

aw -++.vw-o.vu = vv2o--vx  9 (pV2); 
at Po 

vorticity : 

temperature: 
ae 
-++.ve = K p e ;  
at 

salinity : a s  
--+u.VS at = K,V2&; 
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FIGURE 2. Notation. 

where u is the velocity, o = V x u is the vorticity, v is the coefficient of kinematic 
viscosity, K,  is the coefficient of thermal diffusivity and K, is the coefficient of 
diffusion of salinity. All the coefficients, v, K, and K,, are supposed constant. In  
equation (5 ) ,  the Boussinesq approximation has been made. (This approximation 
is valid in the experiments because of the small proportional differences in 
density which occur.) We shall suppose that the motion is confined to the (z, z )  
plane (this assumption is justified in appendix C for the type of solutions ex- 
amined), so that there exists a stream function, $, with 

(8) u = (u, v, w) = WZ, 0, - 
We look for conditions in which the perturbation takes the form of steady 
motions. It is known that, in circumstances in which So, < 0, 8, < 0 with 
Sox = Box = 0, the onset of instability may be characterized by overstable 
motions, that is growing fluctuations (Veronis 1966). It appears that similar 
overstable motions will occur if AS', and Oox are non-zero, and that the presence 
of horizontal gradients will tend to destabilize the motion, but these circum- 
stances are not considered here. In the conditions which occur in the experiment, 
we have not been able to see how, on physical grounds, an overstable motion 
might occur, and the onset of instability is seen to take the form of convective 
rolls rather than overstable motions. 
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The linearized perturbation equations are 

~ V ; t ~ + + ( p S , - - a e ~ )  = 0, 

~ o x ~ z - ~ o z ~ x  = K,V2,S, 

80, @z - 802 @x = KO w, 

FIGURE 3. Sketch of the cmve given by equation (17) 
for (a)  R E <  0, R, < 0, ( b )  R, > 0, R, < 0. 

where V2, = a2/ax2 + a2/az2, and 8 and S are the perturbations in temperature and 
salinity, respectively. If we substitute from (10) and (11) into (9), we obtain an 
equation for the stream function, 

This equation, and (10) and (1 l), are to be solved subject to boundary conditions 
on the planes x cot y - x = 0,  dlsin y. In  an experiment the boundary conditions 
would be those of zero velocity at the planes, together with some appropriate 
conditions on salinity and temperature (for example, no salinity flux through 
the planes and the temperature maintained constant). Whilst it is desirable to 
apply such conditions, to do so is a considerable task and one which the value of 
the results might hardly justify; instead we select simple analytic solutions of (12) 
which satisfy the condition that there is no flow through the bounding planes, 
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and, for the moment, disregard what other boundary conditions may be satisfied. 
This inverse method has long been used in finding solutions for the BBnard 
problem which are unrealistic, in the sense that they do not satisfy boundary 
conditions which can be produced in the laboratory. It is possible that the general 
character of the flow is well predicted by such solutions, particularly when the 
wall boundary layers influence only a small part of the total flow. We shall 
discuss this point later in the context of the experiments. 

FIGURE 3 ( b ) .  For legend see facing page. 

A solution of (12) which satisfies the no-flow condition at  the boundaries is 

qk = 2qkn sin k(z cot y - z) sin (Zx -I- mz), 

= ~ ~ , { C O S [ ( Z + ~ ) ~ + ( ~ - ~ C O ~ ~ ) Z ] - C O S [ ( Z - ~ ) ~ + ( ~ + ~ C O ~ ~ ) Z ] } ,  (13) 

where $,, k, Z and m are constants, provided that k = (nvsin y)/d, where n is 
an integer, and 

We now introduce non-dimensional variables by scaling x and z with 

d/ (nr sin y ) , 
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[(L T 1)2+ ( M  k cot y)'I3 = R,(L T 1)2 - R,(L T 1) ( M  & cot y) ,  (15) 
where 

and 

md gd4PSOx - 9d4a60x M = -  R, = 
la L=- 

nrsiny'  nn sin y' n4n4 sin4 yvks n47i-4 sin4 yvK,' 

gd4& - 9d4a60, R, = 
n4n4 sin4 yvKs n4n4 sin4 yvK,' 

sd"ae0, 
n k 4  sin4 yvK, 

The expression 

has the form of a Rayleigh number, and parameters corresponding to this and 

have already appeared in the problems of thermohaline convection between 
horizontal parallel planes. Solutions of the equations (15) represent possible 
steady flows with a cellular pattern. In  order to find out which of these flows 
will occur for given vertical gradients of salinity and temperature as the hori- 
zontal gradients are increased (but always satisfying (2)), it is necessary to find 
the minimum value of IR,I which satisfies (15), and the corresponding values 
of L and M ,  for a given value of R,. The equations (15) are equivalent to 

(P2 + q2I3 = RzP2 - R,pq, (16) 

with origins displaced to ( -  1, cot y )  and (1, -coty). Equation (16) is para- 
meterized by putting q = up, so that 

(and p = q = 0). This curve is shown diagrammatically for R, < 0, R, < 0 in 
figure 3 (a )  and for R, > 0, R, < 0 in figure 3 ( b ) .  

In the (L, M )  plane we have two such curves and the minimum value of R, 
for which there are simultaneous solutions of (15) is, in general, that value of 
R, for which the two curves first touch. This condition is generally difficult to 
obtain and we therefore examine in detail only the particular cases of interest 
y = +n and y = 0. 

Case 1. y = in (vertical walls) 

The-centres of the two curves are at ( k 1,0) (see figure 4 (a) ) .  To a first approxima- 
tion, the curves first touch when the left-hand curve touches the line L = 1. 
From (17) we find that dp/du = 0 when 

(5a2 - 1) R, - BUR, = 0, (18) 

and the condition that the curve (17) touches p = 2 is that (18) and p = 2, that is 

16( 1 + a2)3 = R, - aR,, (19) 
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are satisfied simultaneously. Equations (18) and (19) can be written 

R, = - 96a(l+ a')', 
R,=-16(5a'-1)(1+~2)', 
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and this is a parametric form of the approximate stability curve in the (R,, R,) 
plane, which is sketched in figure 5. As a + co, ( - R,) and ( - R,) both tend to 
infinity and ( - R,) + 2.50( -B@, whilst, when a2 = i ,  - R, = 62 and R, = 0. 
(For R, 2 1, the curves in figure 4(a) may touch at L = 1M = 0 and solutions, 

M I  

FIGURE 4. (a) Sketch of the curves representing the simultaneous equations (15) 
for y = and (b )  equations (23) for y = 0. 
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$a sin (mnxld), independent of R, may be found. However, solutions with 
m = 1 do not satisfy a condition of no mean vertical flux and the solution with 
m = 2 is equivalent to the solution R, = 0,  R, = 16 shown in figure 5 . )  

Now R, = R&’ln4 and Rc = Ri1)ln4 say, where Rg), RL1’ are independent of n. 
The minimum horizontal gradients to  produce steady motions (and therefore 
instability) are given by the minimum values of I R$’l produced by varying n 
but keeping Rg) fixed. 

(0, -16) r 
FIGURE 5. Sketch of the curve representing marginal stability for y = @. 

Now from (20) 

- R$) = 96n4a( 1 + a2) and ( I p )  ( - R$)) = 16(5a2- 1) (1 + $)2, 

and it may easily be shown by differentiation with respect to n and substitution - 
that d n3 

-(-R$)) = 6 4 - ( 1 + ~ ~ ) ~ ,  > 0 if a > 0 and n > 0. dn U 

Hence the minimum horizontal gradients necessary for instability will produce 
a motion with n = 1 and the cells will reach right across the region between the 
vertical walls. 
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The approximation made in assuming that the curves in figure 4(a)  touch 
when the left-hand curve touches the line L = 1 is found to be very good. In  
appendix A it is shown that the solution as ( - R,) -+ 00 is 

min IRxI = 2-76( -R$, 

with L = J($)  and M = ( -  @?,)%. (22) 

(21) 

In  the experiments described in $3, R, will be large and negative, and the 
observations will be compared with the prediction (2 1)  for the relative values of 
R, and R, at the onset of instability. In dimensional units 

q+ = 2@osinysin [ J(3 3 nx + ( -3) R, Qnz 

and the height of each cell is d( - 2/R,)Q, whilst the cell boundaries slope down at  
an angle tand1[( - 27/4R,)t] to the horizontal. For ( - R,) = 2 x lo4, avalue typical 
of the experiments, the cell height is 0.215d and the slope of the cell boundary is 
about 15". The cells corresponding to these values are shown in figure 6. 

min I - R,I = 63, 

with L = 1.01 and M = 0.84. These values agree very well with the approximate 
graphical solution given above. 

The solution for R, = 0 is 

The solution we have found is 

~ = 2@0 sin x sin (LX + M Z )  

(in non-dimensional parameters). At the boundaries @ = 0, but neither first 
nor second derivative tends to zero. It is clear from (9) that a free choice of 
boundary conditions in this case for S and 0 is impossible (for example, since 
V4@ = 0 at the walls X = 0 and n-, S, and 0, cannot both vanish there). In general 
it is possible to specify conditions on S (or 0) at both boundaries, but there is 
then little freedom of choice of conditions on 0 (or S). 

Case 2. y = 0 (horizontal boundaries) 

This case, in the absence of horizontal gradients, has been studied by Stern 
(1960)) Veronis (1965) and Nield (1966). We avoid the singularity in cota by 
taking a solution of the form @ = sin nnz/d sin (Zx + mz), and scale lengths with 
d/nm. Equation (15) now has the form 

[LB+ ( M  11213 = R,L~- R,L(M f 11, (23) 

The curves now have centres at (0, t- 1) and are shown in figure 4 ( 6 ) .  An approxi- 
mate condition that the curves touch is that the lower curve touches the line 
2M = l+(R,.R,)L. Using the parametric form for the lower curve, the lower 
curve cuts this line where 

25 

(Re - aRx)5 = 16( 1 + a2)3 R:. (24) 
Fluid Mech. 38 
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This has a double root for a, that is the line touches the curve, if also 
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(B, - aRJ4 = %c a( 1 +a')' ( - R,J3. (25) 

Equations (24) and (25) may be re-written in the form 

-R,=-(-) 16 6~ (a2-5) 

5 5 -1 (1+a')2' 

FIQURE 6. The shape of the cells predicted to  form at the onset of convective instebility 
for (-Bz) = 2 x 10-4 between vertical walls. The streamlines are marked for @ = 0, 
@ = h$o and @ = +o. 

and this is a parametric representation of the stability curve (figure 7 ) .  
As a -+ 00, ( - R,) -+ co and ( - R,) N 15.4( - R,)&, whilst, fora2 = 5,  ( -  R,) = 62 

and R, = 0. The approximation breaks down when a2 < 5. (For Rx = 0 convective 
motion first occurs when R, = 27/4, see Veronis 1965.) As in case 1 it may easily 
be shown that the value of 

increases as n increases for fixed Rf), and so the onset of instability is charac- 
terized by the solution with n = 1. 

The approximations made in this graphical solution are found to be very 
good. In  appendix B it is shown that, a t  the onset of instability, as ( - R,) -+ 00, 

( -Bx) - 15.6( -R,)t (27) 



Effect of horizontal gradients on thermohaline convection 

with M = 1.4, L = 6*2( -I&)+, 
387 

whilst for R, = 0, (-I&) = 63 with M = 0.84, L = 1-01. 

in case 1. 
The boundary conditions satisfied by the solution are similar to those found 

FIGURE 7. Sketch of the curve representing marginal stability for y = 0. 

3. Experiments 
The experiments described below were designed to test the theoretical pre- 

dictions for the case when the bounding walls are vertical (y = -&) and the para- 
meter R, is large and negative. 

The majority of the experiments were made in an apparatus consisting of a 
rectangular Perspex tank divided into three by two vertical brass plates each 
1 mm thick and separated by 6mm. The central section formed a narrow slot 
6 mm wide, 15 cm deep and 7.5 cm broad, and the other wide sections were water 
baths. The tank walls were increased to a thickness of 1-86 cm in the slot region 
to avoid heating through these walls. (A few additional experiments were made 
in a slot 3.5mm wide, 10.5cm deep and 10.5cm broad. The results of these 
experiments are shown in figures 9 and 10 by the points marked with crosses.) 
The whole tank was filled with brine with a uniform vertical salinity gradient 
produced by the method described by Oster (1965, see p. 74, ‘Instant’ density 
gradient). The brine was at room temperature, and the density gradients, corre- 
sponding to the salinity gradients, varied from 4 x 10-4 to 1-52 x 10-2gcm-4. 

25-2 
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The slot was isolated from the filling device and from the neighbouring water 
baths, and small crystals of potassium permanganate were suspended on thin 
wires in the slot so as to produce traces by which to observe the fluid motions. 
Both water baths were then stirred continuously and their temperatures recorded 
every half minute. One of the baths was heated slowly,? the heating rate being 
controlled to a maximum of about 0.5 "C min-l (usually much less). The use of 
a narrow slot and a slow rate of heating was an attempt to produce the con- 
ditions of the theory, namely uniform temperature gradient and zero density 
gradient across the slot. When one side of the slot is heated, vertical motions 
occur under buoyancy forces, which distort the salinity field so as to produce 
horizontal salinity gradients tending to restore the initial zero horizontal density 
gradient. The vertical temperature gradient is zero, and the initial vertical 
salinity gradient is always maintained in these motions. The conditions very 
close to the walls, at which a zero salinity-flux condition must be satisfied, are 
unlikely to be ideal, but over the major part of the width of the slot the heating 
rates are sufficiently small to produce suitable conditions for comparison with 
those envisaged in the theory. The rates of heating were reduced as the con- 
ditions were approached at  which instability was, from earlier experience, to be 
expected, so as not to seriously overshoot the critical conditions. The temperature 
difference between the baths was held constant when instability was observed. 

For small temperature differences between the vertical walls, maintained for 
up to 80 min, no instability was observed except near the top and bottom of the 
slot where one or two convective roIls were observed; however, when the tempera- 
ture difference was sufficiently large, two-dimensional rolls were found to develop 
quite rapidly and apparently simultaneously in the slot well away from the 
horizontal boundaries. The rolls are shown in the photograph, figure 8, plate 2, 
in which the camera is pointed in a horizontal direction looking along the axes 
of the rolls in the plane bisecting the slot. The heated water bath is to the right 
of the photograph, and the cold bath to the left. The scale is in centimetres. The 
cells are well developed in two groups, but are only just becoming unstable in the 
very centre of the slot. The boundaries of the cells slope down to the left as 
predicted in the theory. It was noticed that the formation of cells was accom- 
panied by a marked increase in the rate of heating of the colder water bath. For 
an initial vertical density gradient due to salinity of 1 x 10-4g the tempera- 
ture difference across the slot required to just produce rolls was about 2.3 "C and 
the cell height was 3.3mm in the 6mm wide slot. The maximum temperature 
differences found necessary to produce instability were 7 "C in the 6 mm slot 
and 9.5 "C in the 3.5 mm slot. Over such a large range of temperature the GO- 

efficients a, p, KO, K, and Y are not constant as supposed in the theory, but may 
vary by up to about 10 %.$ For this reason no larger salinity gradients, requiring 
correspondingly larger temperature differences to produce instability, were tried. 

f Cooling one of the water baths was found to produce similar effects to those described 
here, but with cells orientated in the opposite direction as predicted by the theory. It was 
easier to arrange for controlled heating and for this reason the majority of experiments 
were made with one water bath heated. 

2 I n  figure 9 these coefficients appear effectively to the + power and the variation is not 
significant . 
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It was noticed that, contrary to the predictions of the theory, the motions in 
all the cells have the same sense of rotation, with a motion up the heated wall 
and down the cold wall, so that motion in each cell is anticlockwise as seen in 
figure 8. It is suggested that this may be the result of exceeding the critical 
temperature difference required to first produce instability. The additional 
heating of the wall will tend to enhance the upward velocities and thus promote 
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FIGURE 9. Plot of log,, ( - R,) against log,, ( - R,). The points represent observed values at 
the onset of instability for a 6 mm slot (0) and a 3.5 mm slot ( x ). The straight line represents 
the theoretical asymptotic curve at  marginal stability and the dotted line the first-order 
correction. 
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the development of the cells with anticlockwise motions in the figure whilst 
suppressing the motions and development in the cells with clockwise motions. 
It seems probable that as a result an amalgamation takes place between the 
pairs of cells in the very early stages of development. If this is so the cell heights 
which are observed should be twice those predicted, that is 2d( - 2/Rz)*, or 
2.25d/( - Rz)B, where d is the width of the slot. 

After their first growth, the rolls become less regular and generally larger by 
an amalgamation process similar to that described in the introduction for layers 
in a wide tank. 

The results are presented in graphical form in figures 9 and lo.? Figure 9 shows 
a plot of log,, ( - R,) against log,, ( - R,). In the experiments, 

gd4PS0, 9d4ae0, R,, = ~ -~ 
vK, "KO ' 

is approximately equal to gd4ae,,/(~Ks), since PS,, = Box and K,  < KO, and 
R, = gd4/3,So,/(vK,), since 0, = 0. (We have taken the values 

K,  = 1.41 x 10-6cm2sec-1, 

KO = 1.43 x 10-3cm2sec-1, 

v = 1-00 x 10-2cm2sec-1, 

corresponding to 20°C which was near the mean temperature of the experi- 
ments.)$ The points indicate the values measured at  the onset of instability 
and the vertical lines accompanying them indicate the probable range of errors 
introduced by the uncertainty of determining the exact temperature difference 
at  which instability first occurs. The full curve represents the theoretical asymp- 
totic curve for large ( - Rz), which has a slope of 8, and the dotted curve indicates 
the first correction to this (see equation (A9)). Agreement between the theory 
and observation is poor for points with ( - R,) < lo4, but is good for higher values. 
Figure 10 shows a plot of the logarithm of the cell height divided by the slot 
width, against log,( - R,), and the full curve represents the theoretical asympto- 
tic curve for large ( -  R,) on the assumption that the cell height is doubled as 
explained above. The dotted curve shows the first correction (see appendix A). 
The general trend of the theoretical curve is very well followed by the experi- 
mental points, but the observed cell heights are somewhat greater than those 
predicted. The maximum height to which a particle of fluid can rise in the 
initial density gradient, when heated by an amount equal to the temperature 
difference, dooz, between the plates, is daeox/(~So,). (This is the depth of the layers 
based on the explanation given by Mendenhall & Mason.) This height, divided 

A few additional experiments were made using sugar instead of salt to produce the 
initial density gradient. These experiments showed a trend towards the theoretical curve 
of figure 9, similar to that found using salt, but gave higher values for ( - R,) by factors of 
1.25 to 2 in the range 4.25 < log,, (-&) < 5.25. The values of cell heights were not 
distinguishable from those found using salt. Sugar has a coefficient of diffusivity of about 
0.52 x cm2 sec-l. 

$ The maximum salinities used in the experiments would produce an incrcase in viscosity 
of about 12%. 



Effect of horizontal gradients on thermohaline convection 391 

by d, is equal to RJR,. If the asymptotic relation ( - R,) = 2-76( - R$ is valid, 
then this becomes 2.76/( - R,)!, which is not much different from the prediction 
for cell height divided by slot width given by our theory, and fits the observed 
values for cell height quite as well. 

The general agreement between the observations and the theory at large 
values of ( -Rs) is surprising in view of the failure of the theory to observe the 
theoretical boundary conditions. It is known that, in the BBnard problem, the 
effect of different boundary conditions is to change considerably the critical 
Rayleigh numbers (see Chandrasekhar 1961, p. 43, table 3) and it therefore 
appears that the agreement found in our results is fortuitous. It is possible, 
however, that, since the ratio of height to width of the cells is becoming very 
small for large ( -I$), the boundary conditions on the vertical walls play a small 
role in determining the cell motions and the onset of instability, provided that 
a condition of no flow through the walls is observed. 

4. Experiments in a wide tank 
Experiments have been performed to investigate the thermal and saline 

structures of the well-developed layers; further experiments with more refined 
apparatus could be performed to advantage, and the results given here should be 
taken as being essentially qualitative. The structure of the layers seemed to 
vary in detail between experiments, dependent mainly on the initial density 
gradient. A particular experiment, which appeared to be typical, is described 
here. 

The layers were produced in a tank constructed of &in. thick Perspex, 
measuring 10-5 x 10.5 x 20 cm. A 2mm thick brass wall separates the tank from 
a water bath containing an electric immersion heater, a stirrer and a thermometer. 
A linear salinity gradient was produced in the tank using the technique described 
by Oster (1965). 

The electric immersion heater could be regulated using a Variac, and in these 
experiments a rapid initial rise in water bath temperature was aimed for, followed 
by a long period at  a steady temperature once a horizontal temperature gradient 
had been established. In  this experiment there was a rise to maximum tempera- 
ture in about limin. 

Cells were seen to develop rapidly, and more or less simultaneously throughout 
the height of the hot wall, in the form of two-dimensional rolls slightly inclined 
to the horizontal, eventually forming layers across the tank. The simplest method 
of visually observing the cells, and the developing layers, was found to be by 
noting the distortion of a vertical line of dye in the tank. Small crystals of 
potassium permanganate were dropped into the tank producing narrow vertical 
traces as they fell through the liquid. Currents towards the hot wall in the lower 
part of each layer and away from the hot wall in the upper part produce corre- 
sponding distortions in the dye line. These distortions were photographed, 
illumination being provided by a Photoflood light behind the tank, the light 
passing through a (water) heat-sink and an opal Perspex screen. The inferred 
maximum current speeds in the developed layers well away from the walls was 
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about 0.35 mm sec-l. The upward currents near the hot wall and the downward 
currents near the cold wall were not estimated. 

The initial density gradient was 1-66 x lO-3g~m-~, with the temperature of 
the hot wall being 11-25 "C above the initial temperature of the brine in the tank. 
The dimensions of the cells produced after 4 min as measured from a photograph 
are given in table 1 (a).  A photograph of the well-developed layers about 72 min 
after the start is shown in figure 11, plate 2. The distorted dye pattern was 
dropped 80 sec before the photograph was taken. The hot wall is to the right and 
the scale at  the left is in centimetres. 

The vertical and horizontal profiles of temperatures and salinity were measured 
in the developing layers at various positions in the tank. 

Salinity profiles were obtained from conductivity measurements. As standard 
precise methods of conductivity measurement are obviously not applicable to 
measurements at a point, the most satisfactory apparatus was found to be the 
single-electrode conductivity probe described by Gibson & Schwarz (1963). 
This gives an output dependent on the values of conductivity within a sphere 
of about lmm in diameter surrounding the fine tip of the probe. As only one 
small electrode need be moved about in the fluid (the earth can be left in one 
position), there is a minimum of disturbance to the cell system. 

The probe and earth were placed in one arm of a Wayne Kerr High Precision 
Comparator. The ratio of the comparator was left at  1.000, and the impedance 
of the probe balanced by a resistance box and capacitance box in parallel in the 
other arm. For a traverse the impedance is roughly balanced, and changes in 
the resistance of the probe circuit are measured by putting the out-of-balance 
signal through a U.V. recorder. As the out-of-balance signal is non-linear with 
relation to the conductivity at  the probe tip, a suitable calibration curve was 
plotted, and U.V. records used in conjunction with this to give the final profiles. 
Temperature corrections to the conductivity were made for some salinity 
profiles, and were found to be insufficient to alter the basic shape of the salinity 
curves. 

The temperature profiles were obtained by means of a 200 Q nominal resistance 
thermistor mounted at the end of i in .  diameter glass tube. This could replace 
the conductivity probe and earth in the arm of the comparator, the final output 
being obtained in an identical manner. In  later experiments a d.c. thermistor 
bridge circuit was used. The thermistor and conductivity probes could then be 
strapped together, allowing simultaneous values of temperature and conductivity 
at  a point to be measured on the U.V. recorder. 

Both conductivity probe and thermistor assembly could be mounted on a 
carriage which could be wound by hand vertically up and down in the tank. As 
the output of the U.V. recorder is time-based, this could only be converted to 
a depth co-ordinate if the rate of winding the handle was reasonably constant 
throughout the traverse. In  table 1, the measurements (a)  are taken by noting 
the position in each cell at which the current velocity, as indicated by the 
distortion of a line of dye, towards the hot wall is a maximum. Measurements (b)  
are obtained from a vertical temperature traverse taken at  the same time as the 
photograph (time taken for traverse about 60sec). The position in each cell a t  
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which the temperature is a minimum was noted, and the cell heights calculated 
assuming a constant vertical velocity of the thermistor throughout the traverse. 
It would appear from these results that the velocity of traverse was reasonably 
constant throughout most of the traverse, and attempts to synchronize the 
winding rate with a stop-watch were found to be reasonably successful. 

Cell A B C D E 

(a)  0.96 1.27 0.77 0.73 0.73 
( b )  0.93 1.24 0.79 0.74 0-65 

TABLE 1. Heights in cm of 5 cells after 4 min. (a )  As measured directly 
from it photograph. ( 6 )  As measured from a vertical temperature traverse 

Salinity (%,,) 

FIGURE 12. The vertical salinity profile near the hot wall, 170 min after the start of the 
experiment. By this time the layers were well developed right across the tank. The dotted 
lines indicate the positions of the cell boundaries. 

A similar carriage was set up to perform horizontal traverses of the thermistor 
and probe. 

Typical vertical traverses for salinity and temperature can be seen in figures 12 
and 13. Approximate positions of the cell boundaries are indicated. 

From figure 12 it can be seen that the salinity is more or less constant through- 
out a fair proportion of the cell height, indicating mixing within the cells. The 
initial linear salinity profile becomes stepped as the liquid takes on a layered 
structure. 
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Figure 13 indicates that the temperature at the top of the cell is greater 
than at  the bottom, as would be expected, though a certain amount of mixing 
appears to take place at the cell boundaries. The mechanism of mixing at the 
cell boundaries was not clear, but in the well-developed layers there frequently 
appeared to be narrow pencils of fluid, when coloured by dye, which looked very 
similar to salt fingers. These seemed to originate at the cell boundaries, where 
they sometimes had the appearance of cusped waves (see Thorpe 1968, figure 

28.25 28.5 28.75 29.0 

Temperature ("C) 

FIGURE 13. The vertical temperature profile near the hot wdl,  4min after the start of 
the experiment. The dotted lines indicate the positions of the cell boundaries. 

3(a)) .  The mean temperature of the cells increases towards the bottom of the 
tank. This effect may be caused by the development of a cell at the bottom of 
the tank which is rather deeper than those above it. This cell is the first to form 
(probably in the manner described by Mendenhall & Mason 1923) and, having 
a greater area in contact with the hot wall, is probably more effective in trans- 
porting heat than cells at  a higher level. 

Horizontal traverses show a steady, almost linear, increase in temperature 
approaching the hot wall once a steady state has been reached, and a similar 
horizontal increase in salinity towards the hot wall is also noticed. From the 
horizontal and vertical traverses some idea of the temperature and salinity 
fields in the well-developed layers can be obtained. These are shown diagram- 
matically in figures 14(a) and (b) .  
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wall 

FIQURE 14. (a)  The salinity field in a vertical plane along the tank after 170 min shown 
diagrammatically. The isohalines are at  0.5 %,, intervals with salinity increasing downwards 
everywhere, and the dotted m o w s  indicate the directions of the mean fluid motions. 
The arrows at the walls indicate the layer boundaries. The vertical scale is exaggerated 
54 times. (b )  The corresponding temperature field. The isotherms are drawn at 0.5 "C 
intervals. 
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5. Final remarks and conclusions 
We have examined the possibility of instability of a steady convective nature 

arising from the presence of horizontal salinity and temperature gradients in 
a stably stratified fluid, and compared the theoretical results with an experiment 
in a narrow vertical slot. The results of the analysis are applied to a fluid bounded 
by parallel planes which may be vertical (corresponding to the experimental 
situation) or horizontal (as in the BBnard problem). Relations between a para- 
meter based on horizontal gradients (R,) and a parameter based on vertical 
gradients (R,) are found, which describe the conditions of marginal stability in 
situations in which realistic boundary conditions are not satisfied. Good agree- 
ment is found between the theoretical predictions and observations, and it is 
suggested that this is not fortuitous, but the result of the particular cell structure. 

A complete solution of the problem would include not only more realistic 
boundary conditions, but also a search for overstable modes of instability. It 
appears (from analyses not presented here) that overstability will occur in the 
presence of horizontal gradients if it can occur in the equivalent situations in 
their absence, but it is not clear if and when the overstable mode will occur before 
the convective mode. In the experiments, which have a stable salt gradient and 
no vertical temperature gradient, no growing oscillations were observed, and 
the onset of instability appeared to be due to steady convective motions. 

It is suggested that the layers, which are observed to grow simultaneously in 
a broad tank containing stratified brine solution when the walls are heated 
(figure l), arise from the development of instability of this nature in the neigh- 
bourhood of the heated walls, where conditions occur which are similar to those 
found in the slot. The actual scale of the layers when they first develop will 
depend upon the heating rates, as explained in the introduction. 

Stern (1967) has suggested that a mechanism of instability due to the presence 
of horizontal gradients in the ocean may account for some of the layers which 
have been found, sometimes a t  quite considerable depths, in many parts of the 
World’s oceans (see, for examples, Stommel & Fedorov 1967; Tait & Howe 1968). 
The layers have typical thicknesses of 10m and are separated by quite thin 
interfaces, probably about 1 m on average. The horizontal extent of single layers 
is possibly 10 km or more. Almost compensating horizontal gradients of tempera- 
ture and salinity are known to exist in some of the layers (Tait, private 
communication) and are found not uncommonly in the ocean (see, for examples, 
Stommel & Fedorov 1967; Mann 1967). This paper lends support to  the ideas 
developed by Stern that layers may develop in the ocean in the presence of 
horizontal gradients and, whilst it is impossible to estimate exactly the vertical 
scale of the layers, it would seem that a few metres would not be unreasonable 
if our results can be carried over to a large scale. Once developed, the layers may 
be maintained by salt-fingering processes as suggested by Turner (1968). A 
knowledge of the mean velocity field in the oceanic layers would go a long way 
towards establishing whether their generation could be due to the mechanism 
discussed here, and instruments are now being developed for making such 
measurements. 
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Appendix A 
When y = &r from (15 )  we have 

[(L T 1)2 + M2I3 = R,(L T 1)'- R, M(L T l ) ,  

(a) -&a 1 

2LR, - MR, = 2L[3(L2 -I- M 2  + 1)2 + 4L2], 

(A 1 )  

from which we require the minimum value of I R,I for given R,. 

By adding and subtracting equations ( A  1 )  we obtain 

( A  2 )  

( 1 + L2) R, - LMR, = (L2 + M 2  + 1 )  [( L2 + M 2  + 1)2 + 1 ZLZ]. ( A  3) 

Clearly, if ( -  R,) is large, either ILI & 1 or IMI B 1 (or both), and so retaining 
only the leading terms in (A2) and (A3) 

ZLR, - MR, = 6L(L2 + M2)2,  

( 1  + L2) R, - LMR, = (L2+ M2)3. 

(L2- 1)R, = (5L2-2M2) (L'+M2)2. 

(A 4) 

(A5) 

(A 6 )  

Eliminating R,, we have 

Put x = L2+ M 2  so that ( A  6 )  gives L2 = (R, -x3)/(R,- 6x9. I f  we choose our 
frame of reference so that L, M > 0 we have 

6x2 - R, 
M = (x - L2)+ = 

and so, by substitution in ( A  4 )  

R, = Z(R,- 3x2) 

It may be shown by differentiation that R, has a stationary value at  x = ( - &R,)t, 
which gives a minimum value for ( - R,) of 2-76( - R$. The corresponding values 
of L and M are approximately 

L = .J(#), M = ( -$R,)*. (A 8) 

The next-order terms may be found by solving the equations 

2LR,- MR, = 6LM4, 

( 1  -i- L2) R,- LMRz = M'+ 3M4(1 + L'), 

which gives a minimum value 

( - R,) = 2*76( - R,)% [ 1 +  1.56( - R,)-*], 

when L = 4 3 )  [ I +  2.19(R,)-% 

and M = ( - +R,)i [1  - ( - iR,)b], 

approximately. 
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(b)  R, = 0 

In this case (A 2 )  and ( A  3 )  reduce to 

-MR, = 2L[3(L2+M2+ 1)'+4L2], 

-LMR, = (L2+M2+1)[(L2+M2+1)2+ 12L2]. 

(A 12)  

(A 13) 

The substitution a = (L2 + M 2  + 1)/L2, /3 = 4/L2,  and subsequent elimination 
of /3 yield 

512(3a- 2)* 
if 2 < a < 6 .  (-R,) = - 

4 6  -a)' (a - 2)J (01' + 8a - 4)J 

This has a minimum for IR,I at a = 2.7 approximately, and at this minimum 
( - R,) = 63, M = 0.84, L = 1-01 approximately. 

Appendix B 
For the horizontal layer y = 0, we need to minimize for IR,1 the equations 

[L2 + ( M  k 1)']13 + R,L(M 5 1)  - R, L2 = 0, (B 1 )  

L2R,-MLR, = (L2+M2+1)[(L'+M2+1)2+12M2],  (B 2) 

(B 3)  

which may be written 

- LR, = 2M[3(L2 + Mz+ 1)2+ 4Mz].  

(a)  - R G B  1 

Suppose R, ( - R,)", LIM - ( - Rz)b, 

then from (B 2) ,  (B 3), a-/3 2 0, and a+/3 2 0, and so a $. Since we are 
looking for a minimum value of R,, we try a = $ and then /3 = - f, M B L. 
By neglecting L in comparison with M ,  and eliminating L we find, from (B 2) 
and (B3) 

2M(3M4+ 10M2+3) 
( - R,) = ( - R,)t (5M6 + 5M4 - 9M2 - 1 ) i '  

This has a minimum value when M = 1-4 and 

( - R,) = 15-6( - R,)t, L = 6*2( - R,)-3, 

(b)  R, = 0 

approximately. 

The equations now are exactly the same as the case y = &i-, and so at  the mini- 
mum (-I&) = 63 and L = 1.01, N = 0.84. 

Appendix C 
In  the earlier analysis we supposed that the motion was two-dimensional. 

We now show that the effect of introducing a dependence on the y direction is to 
increase the horizontal parameter IR,i, so that the first unstable mode is two- 
dimensional. 
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The steady perturbation equations are 

Since, from (C l), 

[a"Y i3X O I  (C 1) 
a v V 4 0  = g - (/?S-ae), - - (/?S - ole), , 

uOOx + weoz = KO V 28, 

US,, + wSOz = KsV2S, 

v.u = 0. 

we can write V% = #x, and V2v = #,. From (C4) we have 

v2wz = - V2 1 ,  (b 

where 

By eliminating 6 and S from (C l), (C 2), (C 3) we find 

where 

and so V6#+@ = f(z), 

where f ( z )  is an arbitrary function of z. 
A solution corresponding to (13) is 

q5 = #(+)cos [(k + I )  x - (k cot y - m) z]  sin qy 

+ +(-)cos [(k - 2) x- (k cot y + m) 21 sin qg, 
2(k cot y T m) 
(k k Z)2 + q 2  

where p = [(k f + (k cot y T m)2 + q2], 

and this satisfies (C 6) if 

[(L T + ( M  k cot Y ) ~ +  &']I" = Rz[(L T I)'+ Q2]  - Rx[L T 1) [M _+ cot 71, (C 7) 

where L, M ,  R,, Rzare as defined before (see equation (15)), and Q = qd/(nrsiny). 
These equations are equivalent to 

(P? + q2 + Q2)3 = RZ(P? + Q 2 )  -Rx~iqi ,  (C 8 )  

with origins displaced to ( -  1, coty) and (1, - cot y )  in the (pi, ql) plane. 
It may easily be shown that the set of curves (C 8) for Q + 0 lie inside the curve, 

given by (17), for which Q = 0. Hence the minimum value of IRxI at  which the 
two curves (C 7) touch, and have a common root, is that at which Q = 0. Hence, 
for the type of solutions considered, the onset of instability is characterized by 
no y dependence, and motions have the form of two-dimensional rolls. 
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